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N00173-06-2-C901 
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George E. Ioup, Juliette W. Ioup, Germana Peggion, Department of Physics 
Martin J. Guillot, Department of Mechanical Engineering 

J. Alex McCorquodale, Department of Civil and Environmental Engineering 
Ioannis Y. Georgiou, Pontchartrain Institute for Environmental Sciences 

University of New Orleans 

This grant consisted of work divided into two parts. The first part, "Ocean 
Modeling," was performed off-campus. The lead researcher was Dr. Germana 
Peggion of the Department of Physics at UNO. Her colleagues for this research 
were employees of the Oceanography Division of the Naval Research Laboratory 
at Stennis Space Center (NRL-SSC). The main objective of the ocean modeling 
portion of this grant was to collaborate with and assist NRL-SSC in implementing, 
evaluating, and applying ocean forecasting systems in support of naval 
applications. 

The second part of the grant (Coastal Modeling) consisted of calculations 
concerning storm surge simulations over south Louisiana and was performed on 
campus. The lead investigator was Dr. Martin Guillot of the Department of 
Mechanical Engineering at UNO. He was assisted in this work by Dr. Ioannis 
Georgiou of the Pontchartrain Institute for Environmental Sciences at UNO and 
Dr. Alex McCorquodale of the Department of Civil and Environmental 
Engineering at UNO. The objective was to compute water surface elevations over 
southern Louisiana due to storm surge produced by the updated "Standard Project 
Hurricane" (SPH). The SPH defines a methodology for producing hurricane path, 
forward speed and wind field scenarios that are used as design criteria to guide the 
design heights of the levee system in southeast Louisiana. 

Dr. George Ioup and Dr. Juliette Ioup of the Department of Physics at UNO 
administered the grant. 

There are five parts to this report. The first is this overview. The second is a 
summary of achievements for the Ocean Modeling by Dr. Peggion organized by 
Task and titled Ocean Modeling. The third is a summary of the achievements for 
the Coastal Modeling by Dr. Guillot and Dr. Georgiou titled Standard Project 

20090401083 



Hurricane Update: ADCIRC Storm Simulations Over Southeast Louisiana. The 
fourth and fifth are two manuscripts to be published in the Journal of Marine 
Systems, which summarize some of the work by Dr. Peggion and her colleagues, 
Super-ensemble Forecasts and Resulting Acoustic Sensitivities in Shallow Waters, 
and A Note on Ncom Temperature Forecast Error Calibration Using the Ensemble 
Transform. The latter papers were also supported by a funding from NRL-SSC 
through NASA-Stennis and the Louisiana Board of Regents to UNO as well as by 
a follow-on NRL cooperative agreement with UNO, N00173-07-2-C901. 



STANDARD PROJECT HURRICANE UPDATE: ADCIRC 
STORM SIMULATIONS OVER SOUTHEAST LOUISIANA 

By 
Dr. Martin J. Guillot 
Dr. Ioannis Georgiou 

University of New Orleans 
New Orleans, LA 

Objective 
The purpose of the current effort is to compute storm surges produced by the 

standard project hurricane (SPH) using the ADCIRC storm surge model and to compare 
surges resulting from indices defined in a 1959 National Weather Bureau report with 
indices defined as part of the SPH reanalysis after the 2005 hurricane season. 

Standard Project Hurricane 
The SPH is one of the design criteria the U.S. Army Corps of Engineers uses for 

hurricane protection projects along the east and gulf coasts of the United States. The SPH 
is a hypothetical hurricane based on historical data and observations of hurricanes that 
have occurred the Atlantic basin along the east and gulf coasts and was originally defined 
in 1959 as part of the National Hurricane Research Project in the U.S. Weather Bureau 
Report No. 33 [1] (subsequently referred to as NHRP 33) using data from storms that 
occurred during the period 1900-1956. That report defined the SPH as "...the most severe 
storm that is considered reasonably characteristic of a region in which the basin is 
located". The U.S. Weather Bureau and the U.S. Army Corps of Engineers (USACE) 
jointly derived the specifications, criteria and procedures for computing the SPH defined 
in NHRP 33. The U.S east and gulf coasts were divided into zones of approximately 
equal area and SPH indices were defined for each zone. The three zones defined on the 
gulf coast are shown in Figure 1 (taken from NHRP 33). The primary indices used to 
define the SPH within each zone are: central pressure index (CPI), maximum 30 ft (10 m) 
over water winds, radius of maximum winds and forward speed. The New Orleans area is 
located in zone B. 

The SPH has undergone reanalysis several times since originally defined in 
NHRP 33. Reanalysis has included redefining both the SPH indices based on more recent 
(after 1956) data and refining the methodologies used to compute the wind and pressure 
fields. In 1979 a reanalysis of the SPH indices based on storms through 1975 was 
published in NOAA Technical Report 23 [2] (subsequently referred to as NWS 23). That 
document redefined the SPH as "a steady state hurricane having a severe combination of 
values of meteorological parameters that will give high sustained wind speeds reasonably 
characteristic of a given region", and also revised the methodologies used for computing 
the wind and pressure fields from those used in 1959 NRRP 33 report. In 1996, 
Thompson and Cardone [5] developed a model for generating tropical cyclones based on 
the planetary boundary layer approach. This approach was incorporated into the Ocean 



Weather, Inc (OWI) meso-scale vortex numerical model for specification of surface wind 
and pressure fields inside tropical cyclones based on specifying the appropriate indices. 
After the 2005 hurricane season, the SPH indices were reanalyzed again to include all 
data from 1851 through the 2005 hurricane season. Levinson [3] presents the results of 
the SPH reanalysis and compares the 1979 indices defined in NWS 23 with the new 
indices defined as part of the SPH reanalysis after the 2005 hurricane season. 

The current study focuses on comparing storm surges predicted by the ADC IRC 
storm surge model using the SPH indices defined in NHRS 33 (1959) and the SPH 
indices defined in the reanalysis after the 2005 hurricane season. For the remainder of 
this report, the SPH indices as defined in NHRS 33 will be referred to as the "old" SPH 
and the SPH indices defined as part of the SPH reanalysis after the 2005 hurricane season 
will be referred to as the "new" SPH. The methodology for computing the wind and 
pressure fields for the old SPH is based on the methods in the 1979 NWS 23 report and 
the methodology for computing the wind and pressure fields for the new SPH is based on 
OWI tropical cyclone model called TC96. Storm surges are computed using the shallow 
water modeling system ADCIRC 

The approximate SPH wind field parameters used in this study are presented in 
Table 1. 

Table 1: SPH indices used to define the new and old SPH. 

Central 
Pressure Index 

(mb) 

Radius of 
Maximum Winds 

(nautical mile) 

Max Wind 
Speed 
(mph) 

Method for 
computing wind 

and pressure 
New SPH 904.1 11 132.0 OWI TC96 model 
Old SPH 934.6 30 104.0 NWS 23 
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Figure 1: Gulf coast zones defined in Report 33. 



ADCIRC Storm Surge Modeling System 
The ADCIRC storm surge model was originally developed by Leuttich and 

Westerink [4] and since then has undergone extensive development by several 
researchers and organizations. The model is based on the finite element method and 
incorporates the generalized wave continuity equation (GWCE) for numerical stability. 
ADCIRC computes water surface elevations and velocities at nodal points for the 2-D 
depth averaged shallow water equations. A parallel version of ADCIRC has been 
developed to run on several parallel architectures, including Linux clusters. For this study 
the ADCIRC model was run on the 64 node Linux cluster at the University of New 
Orleans. Version 46.52 is used in conjunction with the southeast Louisiana mesh 
sl!5v3 2007 r09a. The code, mesh, control files as well as wind fields were provided by 
the U.S. Army Corps of Engineers, New Orleans District. The wind fields used to force 
the ADCIRC model and are discussed in more detail below. 

Modifications to Original Mesh 
The ADCIRC mesh consists of nodes, elements and boundaries. ADCIRC has the 

capability to model several types of boundary conditions including, but not limited to, 
elevation (tidal), inflow (river), outflow and weir. Levees are modeled using weir 
boundaries. Weirs are specified at the given levee height for each levee using weir node 
pairs and when the water surface elevation exceeds the elevation specified at the weir 
node pair, weir equations are used to compute flow over that levee to simulate levee 
overtopping. For the SPH study, levee overtopping was prevented in the Lake 
Pontchartrain and vicinity, including the west bank by specifying the elevation of the 
node weir pairs of the flood protection levees to be 25 m. The purpose is to help 
determine levee heights that would be required to protect the New Orleans area and west 
bank from an SPH event. The specific levees raised are shown in Figure 2. 

Figure 2; Node weir pairs that simulate flood protection levees in and around New Orleans that were 
raised to 25 m. 



SPH Tracks and Wind Fields 
The SPH study consists of three primary tracks labeled A, C and F. The tracks are 

based on COE experience and historical storm data, and are shown in Figure 3 along with 
the forward translational speed along each track. The old and new SPH wind field 
contours are shown Figure 4 and Figure 5, respectively. Several things are noted about 
the wind fields. While the new SPH is a stronger storm in terms of maximum wind speed, 
it is also a much smaller storm, with radius of maximum winds almost one third of the 
old SPH. Additionally, as can be seen from comparing the two figures, the wind field 
extends farther for the old SPH than the new SPH. For example, for the storm positions 
shown, the wind speed in the Mississippi sound near the entrance to Lake Borgne 

Standard Project Hurricane Tracks 
  Track A - OLD, Forward Translation 6 knots 

  Track A - NEW, Forward Translation 8 knota 

  Track C- OLD, Forward Translation 5 knots 

  Track C - NEW, Forward Translation 6 knots 

  Track F - OLD, Forward Translation 11 knots 

  Track F -NEW, Forward Translation 11 knots 

Figure 3: SPH Storm Tracks and forward translational speed. 

OLD SPH WINOFIELD 

Figure 4: Old SPH wind field 



Figure 5: New SPH wind field 

is on the order of 70-80 mph for the old SPH, whereas for the new SPH, the wind speed 
has dropped to 40-50 mph. The larger size of the old SPH can have a significant effect on 
the computed storm surge, as will be shown in the results section. 

Results 
The results of the study are presented in a series of contour plots of maximum 

water surface elevation, elevation difference and water surface elevation histories at 
selected locations within the Lake Pontchartrain and vicinity study area. 

All simulations were begun 30 hours before land fall with wind ramping to full 
strength during the first 6 hours, so that full force winds began 24 hours prior land fall. 
Prior to performing the SPH simulations, ADCIRC was run without winds for a 2 day 
simulation with inflow boundary conditions specified on the Atchafalaya and Mississippi 
rivers to provide correct initial water surface elevations for the SPH simulations These 
results were saved and the SPH simulations were hot started from these initial conditions. 
No tidal dynamics were included in this study. 

The maximum water surface elevation contours for tracks A, C and F are shown in Figure 6 
through Figure 8 for the (a) old and (b) new SPH respectively. Figure 6 shows that for track A, the 
surge produced along the south shore of Lake Pontchartrain is higher for the old SPH than for the 

new SPH. This is due to the larger area of the wind Held for the old SPH. Near the MRGO and 
Plaquemines Parish on the east side of the Mississippi river, the storm surges for the old and new 

SPH are comparable. However, the higher surge extends farther into the Mississippi sound for the 
new SPH. This is expected, since the eye passes over this area and the maximum winds near the eye 

wall are higher for the new SPH. For track C it is clearly seen by comparing 

Figure 7 (a) and (b) that the old SPH produces a higher storm surge for most of the area 
of interest, except on the south shore of lake Pontchartrain around New Orleans east. 
Figure 8 (a) and (b) show that the storm surge produced by track F is substantially lower 
than for track A and C. Figure 9 (a) and (b) shows the maximum water surface elevations 



produced by considering all tracks for the old and new SPH, respectively. Figure 10 
through Figure 13 show the differences in computed water surface elevation (new - old) 
for tracks A, C, F and considering the maximum of all tracks, respectively. The 
difference contour plots more clearly demonstrate the differences in computed water 
surface elevation between the old and new SPH. 

Next, water surface elevation histories were computed at selected points in the 
flood protection system in the New Orleans and surrounding areas. The elevation 
recording stations are shown in Figure 14 and are grouped for plotting purposes into four 
sections along the flood protection system. The maximum water surface elevations for at 
each of the 22 stations are shown in Table () for each storm and the maximum of all 
storms. 

Figure 15 shows that along the south shore of Lake Pontchartrain, the old SPH 
produces a maximum storm surge of approximately 5.5 meters whereas the new SPH 
produces a maximum storm surge between 4 and 5 meters. For both storms the storm 
surge is relatively constant at stations 2, 3 an 4, but is higher at stations 1 and 5. Also, the 
storm surge peaks approximately 2 hours later for the old SPH. Figure 16 indicates that 
the maximum storm surge in the New Orleans east section occurs at station 10 and is 
approximately 7 meters. In the MRGO/IHNC section, Figure 17 indicates that a 
maximum storm surge of 8 meters occurs at stations 13-16 and is approximately equal for 
both storms. No appreciable flooding occurred at the west bank stations for track A and 
so those stations are not plotted. 

Figure 18 shows that track C produces significantly lower peak surge along the 
south shore of Lake Pontchartrain than track A, with a maximum surge occurring at 
station 1 of approximately 4.5 meters for the old SPH and just under 4 meters for the new 
SPH. In New Orleans east, Figure 19 shows that the maximum storm surge occurs at 
station 10 and is 6.4 meters for the old SPH and 4.4 meters for the new SPH. Figure 20 
shows maximum surge occurring at station 11 of approximately 8 meters for the old SPH 
and 6.4 meters for the new SPH. Stations 13-16 show a maximum surge of 7.8 meters for 
the old SPH and 5.8 for the new SPH. On the west bank, Figure 21 indicates that the old 
SPH produces significantly higher storm surge at stations 18 and 19 with at maximum 
surge of 7.8 meters for the old SPH and a maximum surge of 5.0 meters for the new 
SPH. Unfortunately, stations 20-22 indicate that the surge has not yet peaked for the old 
SPH, indicating that the simulation ended before the maximum surge was captured. The 
new SPH produces a maximum surge of less than 4 meters at those locations. 

Elevation histories produced by Track F are shown in Figure 22 through Figure 
25. In contrast to Tracks A and C, the new SPH produces higher storm surges for Track F 
rather than the old SPH at the selected locations. This is not surprising, since the eye of 
the storm passes over the city and the new SPH, although smaller has stronger winds near 
the eye. It is seen from Figure 22 that Track F produces significant storm surge on the 
south shore of Lake Pontchartrain and, in fact, produces higher storm surges there than 
tracks A and C. At the other locations the storm surge is still significant, but not as high 
as Track A or C. 

The maximum water surface elevations at each recording station for each storm 
track are presented in Table 2 as well as the overall maximum for both the old and new 
SPH. 



Conclusions 
The study produced some unexpected results. Initially it was thought that the 

stronger storm defined by the new SPH would produce higher storm surges, but that was 
not always the case. It is clear from the maximum water surface elevation contours and 
water surface elevation histories that the larger storm defined by the old SPH indices has 
significant influence on the resulting peak storm surges at most locations of interest. 



(b) 

Figure 6: Computed maximum water surface elevation SPH Track A, (a) old SPH, (b) new SPH 



Figure 7: Computed maximum water surface elevation SPH Track C, (a) old SPH, (b) new SPH 



(b) 

Figure 8: Computed maximum water surface elevation SPH Track F, (a) old SPH, (b) new SPH 
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Figure 9: Computed maximum water surface elevation, locus of Tracks A, C and F, (a) old SPH, (b) 
new SPH 



Figure 10: Difference in computed maximum water surface elevation (new-old), Track A 

Figure 11: Difference in computed maximum water surface elevation (new-old), Track C. 



Figure 12: Difference in computed maximum water surface elevation (new-old), Track F. 

Figure 13: Difference in computed maximum water surface elevation (new-old), locus of tracks A,C 
and F. 
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Figure 14: Elevation recording station locations grouped into sections. 
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Figure 15: Track A SPH Elevation histories at selected locations along south shore of Lake 
Pontchartrain in St. Charles and Jefferson Parish and New Orleans Lakefront. 
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Figure 16: Track A SPH Elevation histories at selected locations along south shore of Lake 
Pontchartrain in New Orleans East. 
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Track A SPH Elevation histories at selected locations along MRGO, industrial canal, and 
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Figure 18: Track C SPH Elevation histories at selected locations along south shore of Lake 
Pontchartrain in St. Charles and Jefferson Parish and New Orleans Lakefront. 
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Figure 19: Track C SPH Elevation histories at selected locations along south shore of Lake 
Pontchartrain in New Orleans East. 



Figure 20: Track C SPH Elevation histories at selected locations along MRGO, industrial canal, and 
GIWW. 
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Figure 21: Track C SPH Elevation histories at selected locations on West Bank. 

^*. c,5 
E 

*^-» 5 m 

x: 
a» c 4.5 

o 
IS 4 

> 
01 3.5 

LU 

8 3 

m 
-xz Zb 
3 
w 2 
k. 
(1) 

•«-• 1 h 
WJ 
$ 1 

0.5 

Standard Project Hurricane Track F 
Elevation Histories - Lake Pontchartram South Shore 

Solid Lines-New SPH 
Dashed Lines - Old SPH 

_i i i i 

-5 0 5 10 

Hours After Landfall, t, (hr) 



Figure 22: Track F SPH Elevation histories at selected locations along south shore of Lake 
Pontchartrain in St. Charles and Jefferson Parish and New Orleans Lakefront. 
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Figure 23: Track F SPH Elevation histories at selected locations along south shore of Lake 
Pontchartrain in New Orleans East. 
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Figure 24: Track F SPH Elevation histories at selected locations along MRGO, industrial canal, and 
GIWW. 
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Figure 25: Track F SPH Elevation histories at selected locations on West Bank. 

Table 2: Maximum recorded water surface elevations at selected recording stations. 

Maximum Water Surface Elevation at Recording Stations 
Track A Track C Track F Maximum 

Station Old New Old New Old New Old New 
1 5.4 4.3 4.7 4.1 3.7 5.7 5.4 5.7 
2 5.5 4.2 4.1 3.7 3.7 5.7 5.5 5.7 
3 4.8 3.5 3.7 2.9 3.0 4.9 4.8 4.9 
4 4.8 3.4 3.0 2.4 2.7 4.7 4.8 4.7 
5 5.2 3.5 2.1 1.7 1.7 4.1 5.2 4.1 
6 5.3 3.5 1.0 0.8 1.6 2.8 5.3 3.5 
7 5.0 3.3 2.0 2.0 1.5 1.5 5.0 3.3 
8 4.7 3.5 2.6 2.0 1.8 1.7 4.7 3.5 
9 6.8 6.7 5.3 3.5 2.9 3.7 6.8 6.8 
10 9.1 9.1 6.8 5.0 4.6 5.2 9.1 9.1 
11 8.0 8.0 8.0 7.0 2.7 3.2 8.0 8.0 
12 6.5 6.7 6.1 4.8 3.7 5.1 6.5 6.7 
13 8.0 8.5 7.5 5.5 4.4 6.5 8.0 8.5 
14 7.9 8.2 7.4 5.5 4.1 6.7 7.9 8.2 
15 7.8 8.1 7.2 5.4 4.0 6.5 7.8 8.1 



16 7.7 8.0 7.1 5.4 3.9 6.5 7.7 8.0 
17 6.0 6.2 5.5 4.3 2.7 5.0 6.0 6.2 
18 0.0 0.0 7.5 5.0 1.8 1.8 7.5 5.0 
19 0.0 0.0 7.3 4.8 1.2 1.2 7.3 4.8 
20 0.0 0.0 4.5 3.3 0.7 1.1 4.5 3.3 
21 0.0 0.0 4.5 3.6 1.7 1.5 4.5 3.6 
22 0.0 0.0 3.0 3.6 0.0 0.0 3.0 3.6 
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Ocean Modeling 

Task 1.   Model Hindcasting in Smart Climatology 
Collaboration with: James Dykes1, Lucy Fitzgerald Smedstad1 

Research Objectives: This project aims to develop concepts and techniques that clearly define 
smart climatology for strategic planning for ASW, SPECOPS and MIW, enabling superior 
analysis of environmental variability to support tactical decision planning. Ultimately, smart 
climatology is to take into account the effects on strategic planning of tactical extremes in ocean 
and atmospheric conditions caused by the large-scale climatic variations. A demonstration of 
this project is planned to provide the guidance for future potential transition of an end-to-end 
capability to the war fighter. The portion of this project requiring HPC resources involves 
running (MetOc) models for long historical periods with the goal of providing quick-turn- 
around results on demand. 

Methodology: MSRC resources were utilized in generating the data and information based on 
running atmospheric and oceanographic models over a long period of time in the past, also 
known as hindcasts. A high resolution tactical scale climatology dataset required for knowledge 
extraction was generated by an air/ocean/wave coupled system, which has been constrained by 
relevant large-scale climatic variations. The system components include COAMPS , 
WAVEWATCH III, NCOM, and SWAN for creating strategic and tactical climatologies in 
data-sparse and data-void areas, creating a three-dimensional depiction of the atmosphere and 
the ocean over a three-year period (1997 through 1999). This period is limited in time to cover 
the anomalous events of an extreme El Nino and La Nina for demonstration, and is expected to 
expand in later work. Certain parameters are extracted depending on the mission scenario. 
Ultimately, all the models will be closely coupled under ESMF, but for now they were run 
separately. The ocean models used forcing provided by either NCEP/NCAR Reanalysis or 
COAMPS® run at NRL Monterey. Global NCOM output provided the boundary conditions for 
the regional NCOM. 

UNO contribution: NCOM in a 2 coupled nest configuration were run from midway in 1997 
through 1999. All the resulting model output files including the complete atmospheric model 
outputs were stored on the Sun-Fire-15000 (vincent) at NAVO MRSC server occupying about 
15 terabytes total. This server provided a convenient means for data sharing amongst team 
members. The processed output was passed on to NRL-7440 to be used in pattern analysis 
procedures resulting in information that will allow to examine and validate the types of data 
and statistics that may impact strategic planning. 

Task 2.   Relocatable NCOM 
Collaboration with: C. Rowley, R. Allard, E. Coelho 

Research Objectives: The main purpose of this project is to develop and evaluate a real time 
ocean prediction system developed at the Naval Research Laboratory (NRL) in support of naval 
operations.  The system is portable on several computer platforms and operating systems, and 



rapidly relocatable. Analysis and prediction are available for any part of the world usually 
within a few hours from the request, making it a particularly useful system in emergency 
situations. The major challenge is to offer a default set of parameters that can provide accurate 
solutions for any given configuration, yet allowing the flexibility of tuning and calibrating for a 
given domain configuration. Since is it unrealistic to assume data are available at the spatial 
and temporal resolutions necessary for specification of the boundary conditions, the system has 
the capability of multiple 1-way nesting from basin-scale to regional to high-resolution coastal 
domains. 

Methodology: The relocatable system was evaluated in several realtime configurations in 
support of NAVO operations and other research joint program. While the exercises at NAVO 
have the support of allocated computer resources, other realtime applications are sensibly 
constrained by the computational requirement and a timely deliver of the solution 

UNO contributions: in FY 2006-2007, the relocatable system was evaluated in 2 major 
realtime exercises: 

1. SW_06 (Shallow Water 2006) a joint experiment with NRL and other academic 
institutions (Rutgers University being the leader organization) off the New Jersey coast. 
ReloNCOM was configured in 3 nest domains with a horizontal resolution ranging 
from 2.5 to .6 km. the inner nest was designed to capture the internal wave activity at 
the shelf break and provide accurate forecast to the acoustic group. 

2. MREA_07 (Marine Rapid Environmental Assessment 2007). One of the NRL 
contributions to the exercise was to provide, in realtime, ocean forecasts in support of 
the operations at sea. The NRL prediction system, was configured with 3 nesting 
domains at resolutions of 4, 2, and 0.6 km. Two separate inner nests were configured 
for the BP 07 (Elba) and LASIE (LaSpezia) areas of operations, respectively. For this 
application, no data were assimilated in realtime. However, a small (10 members) 
ensemble of free-runs was used for water column temperature forecast Root Mean 
Square (RMS) error prediction. Ocean forecast are usually the final component of a 
long string of products developed at several different centers: a delay in acquiring one of 
the input data, the classic computer breakdowns (just to mention a few issues) may 
create a domino effect and ultimately a late delivery of the forecast. Preliminary 
model/data comparison and new simulations in a pseudo forecast mode, but with 
different model parameters (such as increased vertical resolution) highlight the skills and 
limits of the default configuration. 
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G. Peggion: A Rapidly Relocatable Ocean Prediction System:  Congress SIMAI 2006. Baia S. 
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Abstract: 

During the MREA07 trial, off the NW coast of Italy in the late spring and summer of 2007, Navy 

Coastal Ocean Modeling (NCOM) multiple nests free run ensembles were made available in real- 

time for the LASIE07 and BP07 events and a fairly complete set of observations were collected 

inside the inner nests domains. This note addresses the problem of predicting NCOM local 

unbiased 0-24 hours forecast errors by perturbing a limited number of possible error sources 

through Monte-Carlo simulations, without local data assimilation. It discusses preliminary results 

using the Ensemble Transform (Bishop and Toth, 1999) to calibrate the ensemble spread by 

adjusting its characteristics (spread-skill relationship and magnitude) to an observed or pre- 

estimated error field. A small (10 members) ensemble of free-runs was used for water column 

temperature forecast Root Mean Square (RMS) error prediction. After being post-processed they 

were compared with observed errors and those estimated using time variability as an error proxy. 

The ensemble runs were generated through atmospheric forcing perturbations using the space- 

time deformation method as proposed by Xiandong, et al., (2007), keeping independent initial 
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conditions. Because at the starting time all runs shared the same IC, the ensemble was run for 

roughly two weeks for spinning up and then used during the following 10 days for data 

comparisons, during which the ensemble spread did not diverge and was consistent with the 

observed dynamics. Comparisons of ensemble spread of temperature profiles with local observed 

errors and time variability (assumed as an error proxy) showed they were consistent through this 

10 days analysis period, with performances above the non-calibrated ensemble estimates and 

time-variability used as error proxy. 

Key words: Ocean Ensembles, Forecasting, Ocean Models, Forecasting Errors, Environmental 

Assessment (43-45N, 9-10.5E) 

1.    Introduction 

When considering numerical prediction of ocean dynamic states using nested domains, several 

sources of error can contribute to cascading uncertainty into state variable estimation (Coelho and 

Rixen, 2008). These sources of error include the errors of the initial and lateral boundary 

conditions, local forcing, bathymetry errors, numerical approximations and filtering, errors due to 

approximations when assimilating observations, errors in the forcing terms and un-resolved scales 

(sub-grid variability). To address this problem, local unbiased (correlation) and persistent errors 

(bias) of the Navy Coastal Ocean Modeling (NCOM) System nested in global ocean domains, are 

typically reduced and monitored by assimilating dynamical balanced analysis fields of state 

variables, derived from observation networks, using the Navy Coupled Ocean Data Assimilation 

(NCODA) system (e.g., Cummings 2005). This system also provides an error estimate of these 

analysis fields at an analysis time. 



In recent implementations (Coelho et al., 2008; Fabre et al., 2008), ensemble based stochastic 

methods have been used to track these NCOM analysis multi-scale ocean errors by running the 

model several times using different forcing and starting from different initial conditions. The 

resultant ensemble spread was constrained at each new analysis time by the new estimate of the 

analysis errors using a technique named Ensemble Transform (ET) (Bishop and Tott, 1999). In 

order to be accurate, the perturbed ensemble members should be taken from a fairly large number 

of independent runs to resolve state variables error covariances and should include all significant 

sources of error and uncertainty (Judd, et al., 2007, Lermusiaux, et al., 2006). Since this is not 

easy to obtain in operational timeframes, and once a smaller number of runs are selected, one can 

expect the ensemble to perform differently inside the simulation domain and through time 

depending on the number of the dominant error modes. This limitation motivates on-going work 

in developing dedicated metrics to diagnose and prognoses ensemble performances through the 

overall domains and forecasting lead times. 

In any case, it is anticipated that a small number of runs may still provide useful information 

under certain conditions (e.g. when there are no strong non-linearity and bias errors are on the 

same order of magnitude of the correlations errors). Furthermore, if the ensemble estimates define 

a domain that contain the most relevant features and scales of the physical system, then they can 

be improved in their consistency through calibration and post-processing by adjusting their spread 

and bias to some training sequence. These methods have been successfully used for 

meteorological ensemble calibration (e.g.Doblas-Reyes, 2005; Hammil, 2007) and for multi- 

model ocean ensembles applications (e.g. Rixen and Coelho, 2007; Coelho, 2008). 

It should be noted that with a small number of independent runs we should not expect to resolve 

the full ocean state covariances with the original model grid resolution, but one can expect a 



small number of runs between 10-15 may still be adequate to track single variable forecast errors 

on a re-sampled spatial domain as long as the number of independent variables can be kept within 

the order of 0(103), following the estimates of Judd (2007). This note will discuss the limitations 

of a small ensemble size used during the MREA07 trial and proposes a method to improve 

forecast error prediction consistency for specific target variables, applicable also for non-state 

variables estimates when there are not many observations or prior to use observations into the 

assimilation process. 

Several methods have been used to perturb the initial conditions fields based on the observed 

errors. In particular Bishop and Toth (1999) proposed a technique named Ensemble Transform 

that allows computing dynamically balanced initial conditions perturbations that are consistent 

with a best estimate of the error covariance. On the other hand, ensemble calibration can also be 

sought through post-processing using Bayesian methods (e.g. Gneiting, 2004, Coelho, 2005 and 

Rixen and Coelho, 2005), within the limits of the known cross-correlations among the observed 

and modeled variables. This work combine both techniques as a post-processing method, applied 

to local single variable ensemble spread calibration. The methodology uses the perturbed model 

statistics re-scaled through an estimate of the error variance, to obtain short term estimates of 

posterior normal probability distributions envelopes of a selected ensemble variable. 

The MREA07 (BP07 and LASIE trials), took place off La Spezia, Italy in the spring and summer 

of 2007 (e.g., LeGac and Hermand, 2007). During the trial, mesoscale relocatable NCOM 

implementations using the RELO system were made available in real-time without performing 

local data assimilation, though remote sensing and global data was assimilated on the outer nests 

used for boundary conditions and initialization. In standard implementations the RELO system 

runs together with the Navy Coupled Ocean Data Assimilation (NCODA) system that performs 

observations quality control and produce local analysis for assimilation that in the present version 



are based on a Multi-Variate Optimum Interpolation technique (e.g. Cummings, 2005). NCODA 

also provides the analysis error fields that are used to re-set the ensemble spread of the initial 

fields in operational ensemble runs using the same ET technique (e.g. Fabre et al., 2008). This 

present solution does not provide reliable analysis error covariances but it is planned the NCODA 

system will evolve in the near future into using hybrid Monte-Carlo ensembles (e.g. Lermusiaux 

et al., 2006) and Variational analysis (e.g. Nogodock, et al., 2007). This will improve error 

covariance estimates and produce analysis fields consistent with the boundary conditions and 

other forcing fields. For this specific implementation, the NCODA assisted assimilation process 

in the inner nests was turned off to allow a fully independent analysis of the model results and 

observations, simulating a scenario where no local data would be available in useful timeframes). 

During this trial the free-run error fields of the RELO system were estimated using an ensemble 

of 10 independent runs with independent initial conditions starting from a common field far back 

in time and perturbed through atmospheric forcing using space-time deformation of the surface 

forcing fields (Xiandong, 2007). The ensemble spread of the free runs was then re-scaled in post- 

processing through an Ensemble Transform (Bishop and Toth, 1999) using the temporal 

variability as an error proxy. These preliminary error estimates were then used for model 

benchmarking and aiming specific ocean-acoustic applications (e.g. Carriere et.al, this volume) 

and to estimate the relative impact of different observational strategies (Coelho et al., 2007). 

2.   RELO-NCOM Setup 

The Relocatable Navy Coastal Ocean Model (RELO-NCOM) is a scalable, portable, and user- 

friendly system for nowcasting and short-term (2-3 day) forecasting simulations (Rowley, 2007). 

There are two major components: 1) NCOM (Martin, 2000) and 2) the Navy Coupled Ocean Data 

Assimilation (NCODA) (Cummings, 2005) for data analysis and model initialization. For a rapid 

configuration, the system relies on a set of data and products available on a global scale 



(bathymetry, winds, analysis of the remote sensing data). These products are generally on a low 

resolution and it is possible to substitute them with local and high-resolution databases. RELO- 

NCOM meets the naval requirements to generate real-time description of the environmental 

variables and it is operational at the US Naval Oceanographic Office (NAVO). 

There is a fundamental difference between assessing an ocean model configuration in a research 

and an operational mode. Both need to be designed, calibrated, and evaluated to encompass the 

dominant dynamics of a given region. The goal is to provide the best possible representation of 

the dynamical features of a specific area. However, a predictive system that supports operational 

applications must be rapidly relocatable anywhere in the ocean (oil-spill response and naval 

operations are the most relevant applications), and easily reconfigured. The principal goal is to 

provide good representations everywhere with the available data (i.e., in spite of the absence of 

complete sets of observations), motivating the need to associate with the system a reliable error 

diagnostics and prediction tool, to allow tracking consistently the error dynamics. 

For the MREA07 trial the RELO-NCOM was deliberately set on its default mode as for a generic 

application with little or no tuning of the physical and numerical parameters. Furthermore, no 

MREA07 or other data were assimilated into the inner nests. The goal of this implementation was 

to test the modeling skills of these free runs and estimate the relevance of the atmospheric forcing 

as a single source of error. 

The daily predictive cycle during MREA07 is described as follows: 

• NCOM is started from the previous day's nowcast (-24 hr) and forced by the available 

operational winds. Open Boundary Conditions (OBC) are extracted from the simulation 

of the parent domain. The OBC for the outer most nest are extracted from NCOM 

configured on a global scale at a 1/8° resolution (NCOM-GL) which is operational the 



Naval Oceanographic Office (NAVO) 

(http://www7320.nrlssc.navy.mil/global_ncom/index.html) (Barron et al., 2006). 

However, this procedure is not restricted to NCOM-NCOM nesting; any nest could be 

coupled with several other dynamical model formulations. 

• During the nowcast, temperature (T) and salinity (S) fields are nudged to the nowcast 

fields of the parent simulations. The nudging during the hindcast phase has been 

suggested to provide a minimum connection with realtime data since NCOM-GL 

assimilates sea surface temperatures (SST) and Modular Ocean Data Assimilation System 

(MODAS) synthetics (with the surface height derived from the Naval Layer Ocean 

Model (NLOM) (http://www7320.nrlssc.navy.mil/global_nlom/). No data are nudged 

after the nowcast (0 hr). 

• A short-term (2-day) forecast is provided. The 48-hour interval has been chosen because 

this is the typical period in which meteorological mesoscale forecasts are available and 

reliable. 

• The nested domains run then in sequence using boundary conditions from the outer nests 

(i.e., one way nesting). Although NCOM provides a tile nesting approach, the default 

procedure allows an easy and rapid configuration and assessment of each domain, and 

more importantly, a possible different choice of the vertical coordinate between nests. 

Fig. 1. illustrates the triple nested configuration for the MREA07 exercise. 

In this model configuration, all domains are forced with the Coupled Ocean Atmosphere 

Mesoscale Prediction System (C0AMPS8t) Europe-2 winds (27km) (Hodur, 1997) and heat 

fluxes from 0.5° Navy Operational Global Atmospheric Prediction System (NOGAPS, Rosmond 

et al., 2002). Monthly river discharges are extracted from the global river data set of NCOM-GL 

(Barron and Smedstad, 2002), with the Arno, Magra, and Serchio transports provided by the 

f COAMPS is a registered trademark of the Naval Research Laboratory 



Istituto Idrografico Italiano. The vertical resolution of each domain has 38 o- and 7 z-levels (45 

levels). The outer nest (nestO) is at 4km horizontal resolution with the primary purpose of serving 

as a buffer zone between NCOM-GL's NOGAPS forcing and the higher resolution wind data set. 

Nest 1 (2km resolution) include tides. Tides are specified at the boundaries from the Oregon State 

University tide model (Egbert and Erofeeva, 2002). Nest2 and nest3 are at about 0.6km resolution 

and configured for the BP07 (Elba) and LASIE07 (LaSpezia) domains, respectively. An ensemble 

of 10 independent runs of the inner nests was also made available in realtime, using similar set- 

ups but with perturbed atmospheric forcing using the space-time deformations method 

(Xiandong, et al., 2007). 

[ FIGURE 1] 

One of the most pressing issues of realtime operational forecasting is to provide the information 

in a timely manner. Ocean forecasts are usually one of the final components of a long string of 

products developed at several different centers: a delay in acquiring one of the input data (e.g., 

winds, boundary conditions), the classic computer breakdowns (just to mention a few issues) may 

create a domino effect and ultimately a late delivery of the forecast. In order to avoid delays in 

the queue submission which are often occurring at the supercomputer sites, the full forecast cycle 

is performed at the Naval Research Laboratory - Stennis Space Centre (NRLSSC) on dual 

processor Opteron-based LINUX platforms. The latest NOGAPS and COAMPS analysis and 

forecasts are usually available at NRLSSC before 1000GMT, but NCOM-GL daily hindcasts and 

forecasts arrive at about 1130GMT. Therefore, to speed up the delivery of the results, the OBC 

for nestO are extracted from the NCOM-GL 72hr forecast of the previous day. This makes it 

possible to start the simulations at about 1000GMT and complete the forecast cycle usually 

before NCOM-GL latest files are available at NRLSSC.  Unfortunately, only a partial COAMPS 



data set is archived at NRLSSC, so the price for this procedure is the use of NOGAPS-0.5 heat 

fluxes. 

The model results are written to NetCDF files at user specified z-levels and time increments. It is 

important that the z-levels be consistent with the NCOM vertical grid. A coarse vertical 

resolution in the NetCDF files may remove features reproduced by the model; a too fine vertical 

resolution increases the computational cost and memory requirement without increasing the 

physical accuracy of the solutions. For this real-time exercise, the NCOM fields were provided 

on 47-levels and at a 1 hr increment. To reduce the amount of transferred data, only the 48 hr 

forecast (i.e., no hindcast) of the model and only a few upper vertical levels for the ensemble 

spread were posted on the MREA07 ftp server, generally at about 1230GMT and 1500GMT, 

respectively. 

3.   RELO-NCOM Control Analysis and data comparison 

This note will focus the analysis and discussion for the period June 10 to 25, 2007 and for the nest 

3 area only. In this region, dynamics were mostly dominated by a persistent cyclonic gyre 

centered roughly at 43 40N and 9 20W, modulated by smaller re-circulation cells north and east, 

closer to the coast. The shapes and temperature distributions of these smaller cells was strongly 

perturbed by the wind forcing. During the "sirocco" south-easterly winds (e.g. 06/19 06:00 

snapshot displayed in Figure 2, left panel) the average surface temperatures were higher, with 

warmer waters trapped closer to the eastern coast. During the "libeccio" south-westerly winds 

((e.g. 06/23 12:00 snapshot displayed in Figure 2, right panel), the cold eddy signature becomes 

more noticeable and different recirculation patterns can be found between the eddy and the 

coastline. 

[FIGURE 2] 



The Sea Surface Temperature (SST) images obtained from NOAA AVHRR displayed in Figure 

3, although with different resolutions, concur with the analysis of the previous paragraph. 

The water column was strongly stratified during the whole period. Model temperature hindcast 

and forecast estimates were compared with 160 CTD profiles collected during the trial in the 

period June 4-26, 2007 by three ships in the area (RV Planet, RV Leonardo and NI Galatea). The 

daily CTDs' covered both deep and shallow water throughout most of the surveying time. For this 

work only profiles inside the nest 3 domain were used. For each CTD, the nearest (in space and 

time) hourly model profile was extracted. No horizontal or temporal interpolation is performed on 

the model or data. Since observations are on a higher vertical resolution relative to model 

estimates, the model temperature at a specific z-level should be compared with the mean value of 

the observed values between the intermediate levels up and below (i.e. for the model estimate T 

at level Z„ observations should be averaged between the levels (Zj.i+Zi)/2 and (Zi+Zj+1)/2). The 

model data comparisons displayed in Figure 4 show that temperature errors were more noticeable 

on average at the bottom of the well mixed layer (at roughly 50m depth), with the surface waters 

typically cooler than observations and warmer waters below. Temperature errors were very small 

below the 200m depth. It is also noticeable these error characteristics did not change significantly 

during the analysis period, though significant changes occur in the forcing and dynamic responses 

as mentioned above. 

[FIGURE 3] 

From these comparisons one can assume the prediction skills of the model were limited, not 

significantly above model persistency, such that these free-run RELO-NCOM fields could be 

considered as an analysis tool capable of providing reasonable spatial distributions of the 

10 



temperature fields, up to at least 48 hours. This is mostly due to the persistent nature of the 

dominant local dynamics that did not change significantly during the analysis period. In other 

more dynamic areas one could expect these free-run errors to increase significantly after a few 

hours and differences between forecast lead times also to become more noticeable. 

Since there were no significant differences between these errors, the discussion below regarding 

error prediction will use the 0-24 hours and 24-48 hours temperature forecasts as equivalent 

estimates. 

4.   Ensemble re-scaling using the Ensemble Transform 

The ocean is driven by surface fluxes that are determined by the atmospheric state and are one 

major source of uncertainty. Predicted atmospheric fields often contain the forecast feature of 

interest, but they can be misplaced in space and time (e.g. Hoffman 1995). This characteristics 

motivated attempts to represent forecast errors in terms of a shift of a forecast in space and time 

similar to the pseudo-random fields method described by Evensen (2003) and applied in ocean 

ensemble generation problems (e.g. Demirov, et al., 2003). For the present work, the atmospheric 

forcing perturbations used to force the ocean ensemble members were produced using the method 

developed by Xiandong et al. (2007). It uses only time shifts of the forecast, with a choice of 

parameters to provide a good precision in the atmospheric perturbations, though accuracy may 

not be guarantee over the whole simulation period. 

[FIGURE 4] 

If we neglect bathymetry, error induced by numerical approximations and other sources of 

possible model bias, the ensemble transform (ET) method of generating initial perturbations 

applied in atmospheric ensemble forecasts (Bishop and Toth, 1999) can be used to re-balance and 

11 



re-shape the IC fields of the ensemble subset. Besides assuring all detected error growing modes 

will be equally represented, the advantage of this technique is such that: it respects hydrodynamic 

balances by ensuring that initial perturbations are a linear sum of forecast perturbations from the 

preceding forecast; and ensures that the initial perturbations are equally likely and orthogonal 

under a measure of the probability of initial condition error based on the best available estimate of 

initial condition error variance. This technique does not provide though an initial set of 

background perturbations that need to be introduced using complementary methods, such as 

forcing from an ensemble of atmospheric forecasts as mentioned in the previous paragraph. 

As detailed in Toth and Bishop (1999), through the ET ensemble generation technique, K forecast 

perturbations of N state variables X° (NxK), can be transformed into a set of perturbations Xr 

that are consistent with the background error analysis covariance P" , using 

Xr = X°T 

where T is a transformation matrix determined by the eigenvectors and eigenvalues of the 

projections of the magnitude of the predicted analysis perturbations on the inverse of the error 

analysis covariance matrix. If the number of ensemble members equals the number of state 

variables, this projection guarantees the perturbations covariance to be equal to the error 

covariance. 

Through this transform we can then obtain a set of perturbed fields that are consistent with an 

independent estimate of the error covariance. In operational implementations these initial fields 

are used as new initial conditions for the K independent ensemble runs, providing a method to 

assimilate the observed errors into the ensemble forecasts. For the present application and to use 

this method in post-processing a persistency assumption during the 48hours forecast cycles is 

taken, regarding the projection of the ensemble covariances into the observed errors. 

12 



5.   MREA07 Error Predictions 

For the present application since no data is to be used the ET is computed using the temperature 

48 hours forecast time variances, as estimated by the RELO-NCOM free runs, producing a 

diagonal error covariance matrix  P". Besides allowing for a faster transform, this approach 

allows to keep the shapes of the off-diagonal terms (spatial cross-correlations) as estimated by the 

ensemble, while consistently re-scaling the analysis errors, without introducing further analytical 

or numerical approximations. 

The temperature estimates ensemble spatial correlations are then updated only by the RELO- 

NCOM independent runs. This method allows keeping error covariance updates, without the cost 

of computing and inverting very large matrices. Furthermore, since only a limited number of 

ensemble members are available, this method limits the growth of spurious cross-correlations. 

The same transform matrix T is applied to all time steps of the ensemble estimates. 

The resulting ensemble spread (standard deviations) for each temperature estimate are then 

compared against the absolute value of the RELO-NCOM vs. data mismatches and displayed in 

scatter diagrams as those shown in Figure 5 for days Jun 13 and 14, before and after applying the 

ET. The statistical significance of each of these individual estimates (small blue dots) is 

negligible, such that they are grouped in equally populated bins with 1000 elements, defined 

along the ensemble spread axis. These bins displayed inside the scatter diagrams as large red dots 

will have similar likelihoods and will be statistically relevant. For the ensemble to be accurate, 

bins should be aligned along the main diagonal, highlighted as a black line on the plots. The 

green rectangles around the bins show the standard deviations of each bin along each axis (error 
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and ensemble spread). Other relevant statistic is the mean ratio between measured error vs. 

ensemble spread, (Err/Std in the figures) that should be close to 1 for the ensemble to be accurate. 

[FIGURE 5] 

The graphics in Figure 5 left of the black line show the scatter diagrams for days 13 (left upper 

plot) and day 14 (right upper plot) computed from the ensemble before post-processing. From the 

bin distribution we can see the ensemble to have a positive spread-skill relationship, through all 

ranges of the observed errors, such that estimates of smaller ensemble spread are well correlated 

with smaller errors and estimates of larger error are well correlated with the larger errors, through 

all ranges of observed errors. However, we can see the ensemble was grossly under-predicting the 

magnitudes of the observed errors in roughly one order of magnitude. This is most likely due to 

the fact the initial fields and other major sources of error besides atmospheric forcing were not 

being properly perturbed. 

The data of June 13 was used as the initial day to start the procedure and adjust the ensemble 

spread to the observed error. For this purpose, a multiplication factor of 4 was estimated from the 

data and applied to the temporal standard deviations used to compute the ET throughout the 

simulation period. This value was estimated iteratively in order to bring the ratio Err/Std from a 

value of 11 before the transform to 1. As a result, the red bins also became closer to the main 

diagonal as we can see on the scatter diagrams right of the vertical black line in Figure 5. For the 

following day represented by the 24-48 hour forecast this ratio increased slightly to 1.5, though 

the bins remained close to the main diagonal. 

Other relevant result from Figure 5 is the spatial distribution of the error estimates. In the lower 

color maps one can see the ensemble spread at the surface for days 13 and 14. The black crosses 
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show the points were data was collected during those days respectively. One can see the spatial 

patterns were not strongly changed by the transform and the areas with larger estimated errors are 

shaped along the boundaries of the persistent cyclonic eddy in the SW portion of the domain as 

one could expect. The sampling locations during these two days included several runs across the 

boundaries of this cyclonic gyre. 

Since the ET was using the temporal standard deviation to re-scale the ensemble spread one could 

argue that the information contained in the ensemble would be erased and time variability would 

be the dominant error-proxy. In order to evaluate this hypothesis the same scatter diagrams were 

computed using the temporal standard deviation instead of ensemble spread, as displayed in 

Figure 6. To keep an equivalent accuracy a multiplication factor of 7.8 was also applied to set the 

ratio Err/Std to 1 for the day 13 data. From the scatter diagrams one can see this error proxy keeps 

similar positive spread-skill relations, though the spatial distribution of errors is significantly 

different from those estimates by the ensemble and not so well correlated with the dominant 

dynamics. 

Using the tuning parameters estimated for day 13, one can estimate the ensemble spread and the 

time variability error proxy for the following forecast days. Since observations were made until 

June 25, Figure 7 display the same diagrams for the last two days of June 24 (0/24 hours in the 

labels) and 25 (24/48 hours in the labels) when model-data comparisons were possible. The four 

plots panel in the left shows the results using the transformed ensemble and the panel in the right 

shows the same results using the time variability proxy. One can see the ensemble spread was 

kept consistent with the dynamics and the performance of both the transformed ensemble and 

time variability as error proxy seem close in performance. However, looking to the spatial 

distribution of the predicted surface temperature errors as displayed in the lower color maps for 

days June 24 and 25 one can see the ensemble responded consistently with the "Sirocco" and 
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"Libeccio" wind events, spreading the areas of larger uncertainty around the cyclonic eddy, not so 

well represented by the time variability proxy. 

[FIGURE 6] 

In order to obtain more objective performance estimates, daily performance statistics were 

computed as displayed in table 1. These include the ration Err/Std as an estimate of the error 

estimate accuracy, the bins correlation coefficient (C) as an estimate of the spread-skill and the 

bin deviation from the main diagonal (Bin Bias - BB) as an estimate of the error estimates bias. 

[FIGURE 7] 

Overall, during the period June, 13 to 25 the positive spread-skill was kept for all estimates 

(ensemble with and without transform and time variability), with the ensemble performing 

slightly better showing a 0.8 correlation coefficient among the bins while the time proxy had a 0.7 

coefficient. The ratio Err/Std was also kept consistently through this period such that on average 

through this period the ensemble value was 13.4, the ET was kept as 1 and the time proxy as 1.1. 

The mean differences between bin coordinates (i.e. deviations from the main diagonal) can also 

be used as an error bias estimate. Through this 12 days period (June 13 to 25) the ensemble 

estimates after the transform remained unbiased while the original ensemble had a value of 0.4 

and the time variability proxy showed also a negligible negative bias of 0.03. 

6.   Concluding Remarks 

The work presented above showed that some level of predictability of stochastic environmental 

variables through numerical modeling could be achieved using Monte-Carlo methods, producing 



ensemble based error estimates along with the predicted state variables, even using a limited 

number of ensemble runs. However, the system performance will be space and time dependent 

requiring an accurate metrics system to produce both diagnostics and prognostics of the precision 

and accuracy of the outputs. 

The Ensemble Transform (ET) approach was successfully applied for free-run ocean Mesoscale 

error prediction calibration, by re-scaling RELO-NCOM ensembles produced through 

atmospheric perturbations. Independent data was used for this analysis where the model runs 

were not assimilating any local data. Results show the ensemble spread did not diverge and was 

consistent with the observed dynamics throughout the simulation period. The ensemble showed a 

positive spread-skill through all ranges of the observed errors. 

Comparisons of ensemble spread of the temperature profiles with local observed errors and time 

variability (assumed as an error proxy) showed they were consistent through a 12 days analysis 

period. The ET calibrated ensemble had slightly better performance statistics then the time- 

variability error proxy, most likely due to the fact the ensemble predicted errors were better 

correlated with the local observed dynamics. 

Results show the ensemble spread did not diverge and was consistent with the observed dynamics 

throughout the simulation period. Furthermore, comparisons of ensemble spread of the 

temperature profiles with local observed errors and time variability (assumed as an error proxy) 

showed they were consistent through the 12 days analysis period, with performances above the 

non-calibrated ensemble estimates and time-variability used as error proxy. Overall error 

estimates became unbiased and the system was able to accurately separate large errors from 

smaller errors with a positive spread-skill relationship, through all ranges of the observed errors. 
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Table 1 - This table shows the daily mean values of the ration between individual observed error 

magnitudes vs the correspondent ensemble standard deviation(Err/Std), the correlation coefficient 

or linear regression slope of the 1000 point bin averages (Corr.Coef) and the difference between 

the bins ensemble standard deviation and bin errors in degrees C (Bin Bias BB). Each one of 

these estimates was computed for the ensemble withouth post-processing (Ens), with the ET post- 

processing (ET) and for the post-processed time variability used as an error proxy (Time). The 

raw at the bottom shows the overall averages during the experiment. 

Day Err/Std Corr.Coef. Bin BIAS (BB) 

Ens ET Time Ens ET Time Ens ET Time 

06/13 11.0 1.0 1.0 0.84 0.84 0.75 0.3 0.0 0.0 

06/14 16.3 1.5 1.5 0.74 0.73 0.67 0.4 0.1 0.1 

06/17 20.3 1.6 1.8 0.79 0.80 0.55 0.3 0.1 0.2 

06/18 10.0 0.8 1.0 0.67 0.67 0.89 0.5 -0.2 0.0 

06/20 17.4 1.4 1.8 0.48 0.53 0.38 0.4 0.1 0.2 

06/21 12.1 0.9 1.0 0.89 0.90 0.85 0.3 0.0 0.0 

06/22 10.3 0.8 0.9 0.85 0.86 0.76 0.3 -0.1 -0.1 

06/23 13.0 1.0 0.9 0.90 0.91 0.90 0.3 0.0 0.0 

06/24 11.9 0.8 0.6 0.85 0.85 0.94 0.2 -0.1 -0.2 

06/25 11.9 0.8 0.7 0.70 0.69 0.46 1.3 -0.3 -0.5 

MEAN 13.4 1.0 1.1 0.8 0.8 0.7 0.43 0.00 -0.03 
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Fig. 1. The triple nest configuration for MREA07. 

Fig. 2 - RELO-NCOM upper layer temperature snapshots for the days 06/19 (left panel) and 

06/23 (right panel). The shapshots hours, displayed in the images, correspond to the wind 

maximum stress for each day. During the 19th winds were predominantly south-easterly 

("Sirocco") and during the 23rd they were predominantly south-westerly ("Libeccio"). Both 

panels display how flow patterns changes around the persistent gyre in the South-West corner, 

with warmer waters intruding northward during the "Libeccio" event. 

Fig. 3 NOAA AVHRR Sea Surface Temperature estimates for 06/19 (left panel) and 06/23 

(right panel). During the 19th winds were predominantly from the south-east ("Sirocco") and 

during the 23rd from the south-west ("Libeccio"). Images were produced by automatic processing 

using NURC TERASCAN software. 

Fig. 4 RELO-NCOM water temperature bias and RMS error estimates. The four panels in the 

left show the RMS errors along each simulation day (24 hours period), using different model 

estimates compared with the observations. The color plot named "A04" in the upper left uses 

hindcast atmospheric forcing fields, the plot named "Pers" uses model persistency (hour 0 

snapshot) and the plots below named "F24" and "F48" use 24 and 48 hours lead forecasts 

respectively. The four panels in the right show the error bias (24 hours mean errors) using the 

same model estimates. 

Fig. 5 - Error scatter plots computed using the run of June 13. The upper scatter diagrams show 

the ensemble spread vs. observed forecast error before re-scaling (Figure 5-a) and after re-scaling 
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(Figure 5-b). The forecast errors were computed using the 0-24 hour forecasts (panels in the left) 

and using the 24-48 hour model forecasts (panels in the right). The color plot below each scatter 

diagrams show the surface temperature error estimate (ensemble standard deviation) at hour 

00:00 (left) and 24:00 (right) relative to the simulation day and the white crosses depicts the 

locations used for model-data comparison. 

Fig. 6 - Same as Figures 5-b, but using the time variability as an error proxy instead of the 

ensemble spread as an error estimate 

Fig. 7 - Same results as described for Figure 5-b (on the left) and Figure 6 (on the right) but for 

the model run of June 24. The panels left of the vertical line show the results using the calibrated 

ensemble. Panels in the right show the same results but using the time variability as an error 

proxy. 
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Abstract 

Multi-model Super-Ensembles (SE) which optimally combine different models, have 
been shown to significantly improve atmospheric weather and climate predictions. 
In the highly dynamic coastal ocean, the presence of small-scales processes, the lack 
of real-time data, and the limited skill of operational models at the meso-scale have 
so far limited the application of SE methods for acoustic Rapid Environmental 
Assessment purposes. In the framework of the BP07 experiment conducted South 
East of Elba, sound speed prediction skills of various SE techniques combining 
operational model outputs and in-situ measurements are assessed. Results suggest 
that SE-based predictions provide more robust 24hr forecasts. A detailed acoustic 
propagation sensitivity study at different frequencies and ranges also reviews the 
potential of these predictions for acoustic inversion and tomography efforts. 

Keywords: Ocean-acoustic predictions, multi-model super-ensemble, sound speed, 
Kalman filter, data assimilation, tomography 

1. Introduction 

An increasing number of models are routinely providing operational (atmospheric) 
weather forecasts and climate predictions (Palmer, 2004) but prediction skill is inherently 
limited for a number of reasons, including simplifications in physical processes, errors in 
initial conditions and boundary conditions, numerical schemes, etc. The use of data 
assimilation techniques (e.g. Bennett, 1992; Wunsch, 1996; Robinson et al, 2004; 
Bennett, 2002; Evensen, 2006) to regularly correct for model drifts may compensate to 
some extent for loss of predictability with time (Lorenz, 1963). Model ensembles have 
become an important means of investigating dispersion problems (Galmarini et al 2001, 
2004), tracking individual model errors, increasing forecast skill, and reducing 
uncertainties (Lermusiaux et al, 2006) in highly dynamic and complex environments 
where  predictability  is  limited.   The  multi-model   Super-Ensemble  (SE)  technique 
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(Krishnamurti et al 1999, 2000a, 2000b), which uses an optimized combination of an 
ensemble of models has previously been demonstrated to improve weather, seasonal and 
interannual forecast skill in atmospheric (Kumar et al 2003; Shin and Krishnamurti 
2003a; Yun et al 2005; Mutemi et al 2007) and ocean (Logutov and Robinson 2005; 
Rixen and Ferreira-Coelho 2005, 2007; Rixen et al, 2007, 2008) models over simple- 
ensemble and bias-removed ensemble means. SE methods (Williford et al 2003) have 
been further improved by the use of dynamic (Shin and Krishnamurti 2003b, Rixen et al 
2008), regularization (Yun et al 2003), non-linear (Rixen and Ferreira-Coelho 2007) and 
probabilistic (Rajagopalan et al 2002) techniques. These methods all aim at finding a 
combination of models that optimally agrees with reference data over a training period 
(the hindcast, regression or fit); this combination is subsequently used to produce a SE 
forecast obtained by weighting individual model forecasts. A critical aspect for all super- 
ensemble methods is therefore whether the regression solution is capable of extrapolation 
in time and is applicable to future events. In other words, is the learning adequate to 
provide generalization skills? 

Operational implementation of SE methods in Numerical Weather Prediction (NWP) 
centers is quite straightforward due to the reliability of observational data streams and the 
robustness of the models. On the other hand, in the ocean, the lack of long real-time data 
time series - especially in shallow waters - and a limited suite of operational models 
have so far limited the application of such promising techniques in an operational 
framework. The limitations for in-situ observations in the coastal and shallow water 
environment are mostly due to heavy maritime traffic, intense fishing activity and 
mechanical and biological stress on sensors and platforms. 

A pioneering study was conducted during the MREA04 (Maritime Rapid Environmental 
Assessment) field experiment along the Portuguese coasts to investigate the potential 
benefit of SE techniques for acoustic purposes and concluded that simple linear- 
regression based multi-model prediction were able to improve significantly sound speed 
prediction skills at 24hr lead time (Rixen and Ferreira-Coelho, 2004). 

Real-time ocean-acoustic predictions and data assimilation can be very useful but require 
a precise understanding of the full transfer of uncertainties from the ocean to the acoustic, 
e.g. using ensemble schemes (Lermusiaux et al 2002; Lermusiaux and Chiu, 2002; 
Robinson and Lermusiaux, 2004; Lermusiaux et al, 2006. Adaptive sampling schemes 
and their impact on acoustic propagation may help reducing uncertainties in specific 
regions of interest (e.g. Heaney et al, 2007; Wang et al, 2008 this issue; Yilmaz et al, 
2008). 

In the framework of the BP07 field experiment conducted South-East of Elba in Spring 
2007 (Le Gac and Hermand, 2007), we investigated the use of dynamic SE techniques 
based on the Kalman filter (Kalman, 1960) to allow for a temporal evolution of model 
combinations, which form the basis of the present work, described in section 2. A 
thorough acoustic propagation sensitivity study is carried out in section 3 to assess the 
potential of SE predictions for acoustic inversion and tomography purposes. Specifically, 
multi-frequency correlations and uncertainties are investigated in detail. In a companion 



paper (Carriere et al, 2007, this issue), full-field tomography and Kalman tracking of the 
range-dependent sound speed is investigated for the same field experiment. 

2. The BP07 experiment: ocean observations and predictions 

An intense joint ocean-acoustic observational program and prediction effort took place 
during the BP07 experiment and is described in details in the field trial report (LeGac and 
Hermand, 2007) and in a number of companion publications (Carriere et al, Meyer et al, 
Lam et al, Coelho et al, this issue). 

The main focus of the experiment was on a small area Southeast of Elba Island, Italy and 
in particular on a section in the middle of area 'REA I' (AB transect in Fig. 1) for which a 
detailed geoacoustic characterization of the seafloor and subseafloor is available 
following the Yellow Shark 94 inversion results (Hermand and Gerstoft 1996, Hermand 
1999). However the ocean monitoring effort was not entirely focused on the A-B transect 
but also covered the wider BP3 area in general. 

Iba, Italy 

•fr   Aretusa 
if   Leonardo 
•k   Snellius 

* .»     * • * 

s i 0 

* * * 

Isola dekGiylio 

Fig. 1. MREA/BP07 test areas. The boxes for ocean monitoring and prediction 
(BP3) and for acoustic characterization (REA1) are shown. Stars in yellow, green 
and gray show CTD casts collected by R/V Aretusa (Italian Navy), R/V Leonardo 



(NURC) and R/V Snellius (Royal Netherlands Navy), respectively, during the BP07 
time frame, April 16 - May 4, 2007. Section AB has been one of the focuses of the 
ocean-acoustic experiments. 

Regular CTD were collected by three vessels and provided a reasonable spatio-temporal 
coverage. In addition, two thermistor strings 15km apart and equipped with 11 sensors, 
were deployed by NRV Leonardo at position A and B from 19 April to 1 May. They 
covered water depths respectively from 13.3m to 63.5m and from 13.5m to 53.5m with 
spacing of 5m. Sampling rate was set to 2 minutes. Sensors 7 and 11 at mooring A failed 
and were withdrawn. Note (Fig. 2) the high temporal variability (some patterns have 
cycles shorter than an hour) and the strong differences between the two moorings. 
Surface heating is obvious at station B, whilst station B shows the presence of a more 
complex mixed layer on two occasions and a more cyclic pattern in temperature 
evolution. 
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Fig. 2  Raw temperature thermistor string data time series over depth (in) collected 
respectively at the A and B endpoints of the transect. 



These measurements were complemented by selected MVP surveys (see Lam et al, this 
issue), oceanographic data from acoustic drifting buoys and profiles collected from R/V 
Snellius launch or rubber boat (not shown here). 

All data collected in the vicinity of the AB transect represent a pool of 18866 temperature 
data and 6882 salinity data, which were objectively analyzed and gridded using an 
Optimal Interpolation (01) technique (e.g. Bremerton et al, 1976; Rixen et al, 2001) with 
an horizontal grid resolution of 715m, a vertical resolution of lm and a temporal 
resolution of 3hrs. The 3D box over section AB for period 16 April-3 May 2007 was 
spanning 15km, 110m and 13 days. To compensate for sensor noise and sensor inter- 
calibration issues, the noise-to-signal ratio was set to 1 after cross-validation of this 
parameter. Because of the amount of data, intractable for direct optimal interpolation 
techniques, the domain of analysis was split into sub-domains larger than typical 
correlation lengths to overcome the computational burden, a technique known as sub- 
optimal interpolation. The spatial correlation lengths were set to 4m on the vertical and 
2km on the horizontal. The temporal correlation length was set to 1 day. Lower values 
were creating unphysical results because of the non-uniform distribution of observations 
in space and time. A background field was obtained by spatio-temporal linear regression 
over the whole experimental period (also known as First Guess At Appropriate Time - 
FGAT) and the OI analysis was computed on resulting anomalies. Multivariate analysis 
techniques were not explored here. Sound speed fields were derived from the T/S 
analyses (Fofonoff and Millard, 1983). 

The sound-speed field over section AB exhibits both spatial and temporal variability as 
illustrated in Fig 3 and 4. Strong heating can be observed on the upper 10m at the surface 
over the period resulted in a strong pycnocline and high sound-speed vertical gradients at 
around 15m depth.. The area was subject to strong mesoscale activity as well (see also 
Carriere et al, this issue), as illustrated in the two high sound speed surface cells (Fig. 4). 
The diurnal cycle has been smoothed out by the analysis which was not able to preserve 
all the spectral information because of the limited amount of data. 
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Fig 3. Sound speed (m/s) on section AB versus depth for the start (top left) to the end 
(bottom right) of the experiment. 
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Fig 4. Sound speed (m/s) temporal evolution over depth at different latitudes from 
location A (top left) to B (bottom right). 

2.2 Models and adaptive sampling 

A specific prediction system was set up at NRLSSC for the MREA/BP07 sea trial. As 
described in details in Coelho et al (this issue), it was built around the NCOM model. 
Starting from the global NCOM model at 4-km resolution, two nested models were set up 
in order to cover the full MREA07 area respectively with a 2-km coarse resolution 
(NCOM_COARSE) and a 0.6 km fine resolution (NCOMFINE). SST data and MODAS 
synthetics were indirectly assimilated in the models through the Global-NCOM models, 
while the nested ones directly assimilated COAMPS-Europe 2 wind forcing and 
NOGAPS heat fluxes. 48-h forecasts were made available on a daily basis. 

NCOM ensemble runs were used to minimize forecast error covariance by exploring 
various observational patterns (see Coelho et al, this issue). Error covariance analyses 
were transmitted by NRLSSC to NURC and two CTD surveys were specifically designed 
for this purpose and used in a parallel for the MSEAS-HOPS ocean modeling effort with 
a sensitivity study of acoustic propagation and probability of detection at low frequencies 
(see Lam et al for details, this issue). The proposed CTD sampling strategy was then 
adapted according to real-time on-site constraints (ship time available in between 
acoustic and geoacoustic runs, weather and sea-state, etc). 



2.3 Super-ensemble predictions 

The analysis field and NCOM model outputs were used to explore various ensemble 
prediction techniques. 

The simple ensemble mean (hereafter ENSMEAN) does not use observations over the 
training period and thus, cannot really be considered as a SE technique. However it is 
also a used method, since it is usually expected to provide better forecasts than individual 
models (Kalnay and Ham, 1989). 

The unbiased ensemble mean (hereafter UNBIASEDENSMEAN) corrects for biases on 
each individual model, based on observations during a training period. These unbiased 
models are then averaged. 

The linear regression SE technique (LINREG) consists in finding a linear combination of 
the models, minimizing (in the least mean squares sense) its departure from observations 
during a training period. The resulting weights are then used to combine numerical 
forecasts. This method can be improved by normalizing models and adding a constant 
model (i.e. bias or independent term), hereafter appended with suffix NORM). 
Collinearities between the models can also be removed by retaining only a certain 
percentage of variability of the models by applying an Empirical Orthogonal Function 
(EOF) (also known as Principal Component Analysis - PCA) on the models - in the 
present study 95% of the variance, with suffix EOF - which results in fewer models and 
improves the generalization capabilities of the SE. This method is hereafter referred to as 
LINREG NORMEOF. 

These techniques are well known and have been tested in various oceanographic contexts 
(Rixen and Ferreira-Coelho 2005, 2007, Rixen et al 2007, 2008; Lenartz et al, this issue; 
Vandenbulcke et al, submitted). Training period is chosen a priori and all observations 
are equally important. Naturally however, more recent data should be more relevant and 
weights should be adapted according to recent model skills. 

Sequential data assimilation techniques can continuously adapt the weights during a 
training period when observations are available up to the present time when weights are 
frozen and used to combine available forecasts for the future. The recursive Kalman filter 
(Kalman, 1960) solution is well suited for this purpose and is briefly described in the 
context of SE. It consists of two consecutive steps. 

1) prediction step: 

x'(tl) = M,xa(ti_l) (1) 

P/(//) = MrP
a(/M)M[+e (2) 

2) correction step: 



K = Pf(t,)HT[R + HPf(ti)H
T]-i (3) 

xa(ti) = xf(tt) + K[y°-Hxf(ti)] (4) 

Pa(ti) = Pf(t,)-KHP'(ti) (5) 

The state vector x with covariance P, contains the weights on the models in the SE 
combination. Superscript/denotes forecast state after prediction steps; and superscript a 
stands for analyzed state after the correction steps using observations. The state vector x 
is initialized with a best guess obtained from the LINREG solution. The P is set to 0.5 
initially as we expect P to be far off the optimal value at the beginning of the training. 

In the context of SE, the model matrix M, with error covariance Q, is the identity matrix. 
Standard deviations of the model error for individual weights are set to the variability of 
weights for LINREG solutions of various short sub-training periods, providing the 
diagonal terms for the error covariance Q. 

Observations are represented in the vector y, with error covariance R. In the present 
study, y is the analyzed sound speed, obtained by optimal interpolation of temperature 
and salinity data and R is the expected error from the 01. 

The observation operator H links the state vector space with the observation space and 
contains the individual sound speed forecasts of the NCOM models. 

Similarly to the LINREG method, the SE Kalman fdter based method (KALMAN) can 
be applied to models resulting from an EOF regularization and is denoted 
KALMANNORMEOF hereafter. This approach again is expected to increase 
generalization skills of the SE. 

In oceanography, usually, the state vector contains hundred of thousands of grid points, 
so that low-rank approximations of the Kalman iteration must be adopted (e.g. Pham et 
al., 1998). Here, the state vector is very small {i.e. the three weights, two on the 
numerical models and one on the independent term, which may be reduced down to 2 or 
1 after the PCA regularization), and hence the full Kalman is applied at every grid point. 
The only assumption required for this method is that of a linear model transforming the 
weights in time and Normal weight distributions. 

The methods described above have been tested on 0-24hrs forecast for 3 consecutive days 
with a running window from 29 April- IMay with 3 hrs steps. The training period starts 
on April 16 and ends on 29 April OOhOO. Figure 5 shows resulting sound speed deviations 
from the 01 analyzed fields for days 29 April 2007 12h00. One notes that both 
NCOM_COARSE and NCOM FINE are rather well tuned in the middle of the water 
column, except that the fine resolution NCOM shows some larger 'spotty' errors. 
However strong biases can be identified in the upper 15m at the surface and the bottom 
10m, mainly because only few CTD reached the bottom layers. The ENSMEAN is 
strongly biased as well. The UNBIASED ENSMEAN seems to correct most of the 
surface and bottom bias but has larger errors in the 15-60m range. The LINREG and 



KALMAN forecasts correct for most of the errors, the larger discrepancies at the surface 
having been decreased significantly. Qualitatively, the EOF regularization benefit for 
KALMAN is not directly apparent from the figure. Results for 1 May 12h00 are 
qualitatively similar except that here, the benefit of the regularization on the KALMAN 
method is clearly apparent. 
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Fig 5. 24hrs sound speed (m/s) forecast errors on section A-B on 29 April 12h00 for 
the various models. From left to right and top to bottom: NCOMCOARSE, 
NCOM_FINE, ENSMEAN, UNBIASED_ENSMEAN, LINREG_NORM, 
LINREG_NORMEOF, KALMAN_NORM and KALMAN_NORMEOF 



Fig. 6 Same as figure 5 but for 1 May 12h00. 

The relative weighting on the 2 numerical models and the independent terms, and on the 
EOF compressed models, were examined carefully and show a strong variability, both in 
space (vertical and horizontal) and time, with values usually in the range [-2 2]. 

The weights on NCOM COARSE and NCOMFINE for the LINREG method (Fig. 7) 
suggest that the coarse NCOM model is usually more reliable and contribute significantly 
to the SE skill: weights are usually closer to one over the whole section AB. Contribution 
from NCOMFINE are smaller and sometimes negative, indicating than this model may 
be out-of-phase at specific locations. Note also some higher magnitudes of the weights, 
up to 2, below 100m around latitude 42.61°N, illustrating the poor correlations between 
numerical models and data at this particular location. 
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Fig 7 Weights on NCOM_COARSE (top) and NCOM_FINE (bottom) for the 
LINREG method on section AB versus depth (m). 

Interpretation of these weights in physical terms, especially for the KALMAN-based 
methods, remains difficult as illustrated in Fig 8. The weights on NCOMCOARSE 
remain usually stronger and contribute more to the SE skills, especially on the upper and 
lower 10m of the water column in the first half of the learning period. One also notes the 
important role of the independent term which evolves significantly in time. This may be 
an indication of the strong variability of skills of the underlying numerical models. 
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Fig. 8 Evolution of weights on NCOMCOARSE (top), NCOMFINE (middle) and the 
independent term (bottom) over the learning period versus depth (m) for the 
KALMANNORM method for a profile at 42.64°N (middle of section AB). 

Error statistics between the various models and the 01 analysis have been computed for 
the whole 29 April-1 May forecast period, and are shown in Fig. 9. As expected, root 
mean square (RMS) errors for NCOM COARSE, NCOMFINE and ENSMEAN are 
quite large, mainly due the model biases at the top 15m and the bottom 10m of the water 
columns. NCOMFINE errors are also larger than NCOM COARSE. The 
UNBIASEDENSMEAN method corrects for a large portion of the bias and illustrates 
the benefit of the method. Further methods decrease the RMS error even further, the 
optimal approach being the KALMANNORMEOF. Hence, by adapting the weights 
dynamically on EOF compressed models, the generalization skills of the SE have been 
maximized. NCOMCOARSE shows very good correlation to in-situ analyzed data 
contrary to NCOMFINE. This illustrates the fact that most of the error in 
NCOMCOARSE is due to the bias, whilst NCOMFINE, although better suited for 
eddies and fine-scale processes, is not able to correct for the phase of such features. It 
should be stressed at this point that the NCOM runs were not assimilating any local 
profile data which are used here as independent validation set by comparison with 
numerical and SE numerical forecasts. Note however that the analysis is smoothing the 
observations to scales that are more comparable to NCOMCOARSE (2km-3hrs), hence 
not resolving the  fine  structures eventually simulated by the NCOMFINE runs. 



Validation against in-situ sparse data was tested but conclusions were less conclusive due 
to the scarce and inhomogeneous data distribution. 

The bias of all SE methods using observations is lower than the numerical models and 
their ensemble average. The standard deviation of the forecasts also suggests that SE 
methods, and KALMANNORMEOF in particular, result in better representation of 
energy spectrum of the predictions. The synthetic Taylor skill score (Taylor, 2001) is a 
function of both signal energy and correlation and shows the improvements in skill 
obtained by using progressively more complex methods, starting from the numerical 
models to the dynamic weight adjustment with regularization. 

rms corr bias 

stddiff skill 

Fig. 9. Error statistics for 24 hrs sound speed (m/s) forecast from 29 April to 1 May 
2007 for the 8 prediction methods. From left to right and top to bottom: RMS error, 
correlation, bias, energy difference and Taylor skill. Bars from left to right 
correspond respectively to NCOM_COARSE, NCOM_FINE, ENSMEAN, 
UNBIASED_ENSMEAN, LINREG_NORM, LINREG_NORMEOF, 
KALMAN NORM and KALMAN NORMEOF. 

3. Ocean-Acoustics sensitivity analysis 

Ocean modeling outputs can be used for a number of applications, among which the 
assessment of acoustic propagation constitutes an important matter of interest. For 
shallow water environments in particular, it is well known that the environment strongly 
influences the propagation of sound. A proper description of the environment is thus 



required comprising the water-column acoustic properties (sound speed profile versus 
time and range, sea-surface roughness) and the seabottom geoacoustic properties. It is 
well established that for shallow waters, a precise assessment of the range-dependent 
seafloor and subseafloor properties is essential, whilst the acoustical field is less sensitive 
to the water column properties. As a result, the ocean-acoustics community has spent 
much efforts in the last decade to properly assess the seabottom properties. Recently, 
emphasis was put on comparing the relative effects of uncertain seabottom description 
versus uncertain water column description. Though, no general statement about the 
importance of one environmental parameter over the other can be made (the basic 
conclusion being that it is generally case-dependent), it was nevertheless concluded that 
effective modeling of the water column is an important component of acoustic REA even 
though the seabottom geoacoustic properties prevails in most shallow water 
environments. Interestingly, such statements had already been made previously for 
studies devoted to the assessment of the seabottom properties in which geoacoustic 
inversion methods were reported to have performance limitations due to inadequate 
description of the water column and in particular, the range dependence of the sound 
speed profile and its time variability during the measurements. In the light of these 
observations, the ocean modeling approaches presented in the previous sections 
constitute an interesting test case in order to investigate the impact of ocean modeling 
upon acoustic propagation assessment. More precisely, the AB transect of the 
MREA/BP07 sea trial is characterized by a range- and time-dependent sound speed 
profile, diversely modeled as illustrated in the previous sections. Transposing the ocean 
predictions in acoustic predictions, i.e. mapping ocean modeling into acoustic modeling, 
provides a way to estimate how much acoustics forecasts can be affected by ocean 
predictions. Subsequently, the idea is to adopt the end-user viewpoint of an acoustician to 
estimate the necessary and sufficient degree of sophistication of ocean modeling required 
for acoustic modeling. In other words, is there an interest to model precisely the ocean 
conditions when an approximate description of the water column is already available? 
Moreover, another viewpoint that is worth being investigated with the framework of the 
BP07 sea trial is closely linked to one major objective of the experiment, i.e. the 
assessment of the seabottom properties by means of fused seismic imaging and 
geoacoustic inversion techniques. Considering that the sampling of the seawater 
properties is relatively scarce both in time and in geographical extension, one may 
wonder whether available 4D ocean modeling fields could be directly used as inputs to 
the geoacoustic inversion algorithm. 

To analyze the two viewpoints, a sensitivity study based on intensive acoustic 
propagation simulation was conducted. For the following simulations, the sea surface was 
considered to be perfectly flat and the seabottom properties were kept constant for every 
acoustic run. A range-dependent bathymetry, stratigraphic and acoustic model of the 
sediment along the AB transect was taken from previous seabottom characterization 
studies along the same transect (Hermand and Gerstoft, 1996; Hermand, 1999) and an 
additional geophysical survey of the transect with a multibeam-echo sounder and a 
seismic subbottom profiling system (Fig. 10). As in Hermand and Gerstoft (1996) and 
Hermand (1999), the stratigraphy of the seabottom was simplified in order to keep the 
most important features that have an impact at acoustic frequencies from few hundreds 



Hertz (300) to few kHz (1.8). The seabottom was modeled by an overlying very soft 
sediment layer of clayed unconsolidated sediments with a variable thickness (from 5 m to 
9 m), over a silty harder sediment. The geoacoustic parameters of those layers are 
illustrated in Fig. 11. To compute the complex acoustic pressure fields, the range- 
dependent propagation model based on the parabolic approximation RAM (Collins, 1989) 
was employed. The complex acoustic pressure fields were computed for a series of 9 
frequencies from 300 Hz to 1800 Hz along the AB transect, and for each available time 
step of the ocean modeling (24 steps with 3-h interval from April 29 to May 1). A typical 
environmental model that was used is presented in Fig. 11. 

Fig. 10. Seismic survey of the AB transect using a seismic towed sub-bottom profiler 

taplM 

Fig. 11 Typical scenario for the acoustic prediction runs along the AB transect. A 
range-dependent sound speed profile from the ocean-modeling work is assumed. 
The seabottom is composed of a range-dependent overlaying clayed layer over a 
silty basement. 

Though sensitivity studies are quite often applied in ocean-acoustics to examine the effect 
of various environmental parameters on the acoustic propagation in a particular 
environment, very little has been done to provide a quantitative approach to that issue. 
Typically, the sensitivity analysis is often carried out qualitatively by observing the 
change in acoustic fields that results from an environmental change (e.g. Fig. 12). In 



Dosso et al (2007 and references herein), quantitative approaches have been proposed 
based on normalized bias estimates between the reference transmission losses field and 
the perturbed ones. In the present paper, a different approach based on the cross- 
correlation of the fields is applied. In Dosso et al (2007), it is shown that the sensitivities 
are range, depth and frequency dependent. Here, the depth dependency is not 
investigated. Instead, the measure of sensitivity consists in a normalized cross-correlation 
of the acoustic pressure fields at every range along a synthetic vertical line array (VLA) 
with an inter-element spacing of 1 m for a set of frequencies. The VLA coverage is 
limited to the water column. This metric is related to the classical "Bartlett processor" 
applied within the geoacoustic inversion framework based on matched field processing 
(MFP) (Tolstoy, 2003). Two normalized cross-correlations have been used in the 
analysis: 

E>,>>/)<7,(>-,/)|2 

(6) Mr>/) = 
2>/M2ikiM 

where p is the reference acoustic pressure field using the ocean optimally interpolated 
data presented in the previous section, q is the pressure field with the ocean forecast 
under investigation, Nz the number of hydrophones of the synthetic VLA, p* is the 
conjugate of the complex acoustical pressure field/?. As this point, it should be mentioned 
that the optimal interpolation field is considered as the best reference water column 
model. It is remembered though that it is limited in range and time resolution. 
Both measures are bounded within the interval [0 1], 1 corresponding to a perfect match 
of the compared pressure fields. §\ investigates the correlation of the vertical spatial 
structure of the acoustic pressure fields in phase and amplitude, while, §2 investigates 
only the vertical spatial structure of the amplitude of the acoustic pressure fields (or the 
transmission loss). 
The sensitivity measures defined so far consider changes in the acoustic field at a fixed 
range in space. However, the acoustic field perturbation due to an environmental 
perturbation generally includes a component representing a spatial shift of the field in 
addition to a change to the shifted field (e.g. Dosso et al, 2007). By not taking into 
account that field shifting effect, our approach can lead to over-estimated impacts of the 
environment upon the acoustics, whilst an analysis of the acoustic fields shows 
qualitatively that the impact may be lower. To avoid that effect, a numerical spatial field 
shifting was applied. A range-depth window of preselected size is defined for the 
reference field, centered on the current range. The tested field is correlated with each of 
the combination of the reference field inside the window. Finally, only the maximum of 
the obtained results is retained. For the study, the acoustic field was computed with an 
elementary cell-size of 20m x lm. The reference window was defined +/- 100m about the 
current range and the vertical shift was +/- 5m about the current depth (i.e. for each cell 



in the  frequency x range domain,   121   combinations of the pressure  fields were 
considered). 
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Fig. 12 Example of the acoustical pressure fields obtained with the various ocean 
modeling outputs and the optimally interpolated data field. 

The results of the sensitivity analysis can be considered from several perspectives 
presented in the following subsections. 

3.1 Sensitivity analysis from an acoustic propagation perspective 

In Fig.l3a,b, the resulting </>i and <j>2 fields in the frequency times range domain are 
plotted for the ocean-modeling outputs produced for 1 May, 12:00. Some trends can be 
clearly identified. They obviously overcome the sole framework of super-ensemble ocean 
modeling and can be generalized to the need of a proper description of range-dependent 
properties of the water column as illustrated below: 

• The correlation levels are frequency- and range-dependent. 
• The lower the frequency, the lower the sensitivity. At very low frequency 

(typically from 300 to 500 Hz), little effect on the acoustic field can be observed, 
meaning that a relatively coarse description of the water column is acceptable. At 
higher frequencies this is no longer the case. In particular, it can be seen that 
accurate acoustical predictions are limited to the very close neighborhood of the 
sound source at those frequencies. This is a well-known effect related to the fact 
that the higher the frequency, the lower the acoustic wavelength, the higher the 
impact of the small scale environmental features. 

• The greater the distance, the higher the sensitivity. This result is quite trivial 
since, the acoustic propagation at long ranges is directly linked to the past 
propagation. Differences tend to accumulate with increasing range. 



Interestingly, it should be noticed the stronger impact of the environment when the full 
complex pressure field (amplitude and phase) is kept, rather than when only the 
amplitude is considered. Though the same range-frequency dependency can be observed 
on both types of fields, the correlation levels are much lower when the phase information 
is kept, which demonstrates how much this information is sensitive to the description of 
the environment. As soon as the correlation level is frequency dependent, it is 
emphasized that an accurate range dependent description of the water column properties 
needs to be fed to the acoustic models involved in applications based on full field 
estimates, e.g. matched-field processing (MFP), and model-based matched filter (MBMF) 
processing, the latter involving the prediction of the band-limited impulse response of the 
medium. The importance of such a need increases with frequency and range. 

In Figs. 14a,b, a multi-frequency correlation measure was deduced from the 2D 
frequency times range intercorrelation matrices. This is straightforwardly obtained by 
computing, for each range and each model, the mean of the c/>i and <f>2 outputs over 
frequency, which leads to the generalized multi-frequency Bartlett processor outputs that 
are routinely in acoustic inversion works based on matched field processing (MFP). 
Whatever the frequency and the range, multi-frequency correlations of the amplitude 
fields remain relatively high (over 0.85) reinforcing the conclusion that for these 
frequencies, ocean modeling efforts might have a limited scope (no measure of the degree 
of adequacy of the water column model is discussed here though). For full complex 
pressure fields, the decay of the inter-correlation fields is much higher with range. Only 
the two KALMAN filter-based models are shown to maintain good performances 
(correlation values higher than 0.7 for ranges up to 5 km), whilst the remaining models 
are much more limited in range. Here also, the conclusions are identical: the computation 
of the full complex pressure field requires a more accurate description of the water 
column conditions.. 

MCCM :CABi8 

wm\ )Z 

mg 

I i 
IMNK NOMJF--V 

• twol 

1 L. 'ZM 1 -• • 
2 

I 

f-AtMANNCNUF * 

• 
• ' '•oo 1 

I 
E 

Fig. 13. 2D sensitivities of (a) the complex-valued acoustic pressure field for the 
eight ocean modeling outputs and (b) the amplitude of the acoustic field on 1 May 
2007,12h00. 
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Fig. 14 Multi-frequency sensitivities for 1 May 2007 at 12h00: (a) complex-valued 
acoustic pressure field and (b) corresponding amplitude. 

3.2 Sensitivity analysis from an ocean-modeling perspective 
From an ocean modeling perspective, the sensitivity analysis allows to extract interesting 
features about the performances of the different environmental forecasts. 

As expected from the evaluation of the super-ensemble ocean-modeling skills presented 
in the previous sections, better matches of the acoustic fields can generally be obtained 
when the super-ensemble outputs are employed in place of the initial NCOM simulations. 
In some instances though, the improvements are quite low especially for the less 
sophisticated super-ensemble techniques (ENSMEAN, UNBIASEDENSMEAN). The 
UNBIASEDENSMEAN technique was even seen to lead to less accurate acoustic 
forecasts for the very first predictions on 29 April (see Fig 15a). 

A hierarchy of the skills of super-ensemble techniques from an acoustic modeling 
viewpoint can be established from the intercorrelation fields. The improvement given by 
the ENSMEAN based techniques are generally lower than those of the LiNREG ones, 
which are also less skilled than the KALMAN-based techniques. More interestingly, it 
can be emphasized that the KALMAN filter techniques shows rather constant consistency 
(both in range and frequency) over the 3 days of the test (see Fig. 14a and 15a,b). 
Meanwhile, the two other types of methodologies are far less robust over time. For 
example, the UNBIASEDENSMEAN approach starts with poorer skills than any other 
forecast (see Fig. 15a), and about the middle of the runs, it suddenly improves over the 
other methods, except the KALMAN-based forecasts (see Fig. 14a). The reasons for such 
an improvement seem to be linked to a more accurate assessment of the thermocline for 
this method after several runs. 

Though the most sophisticated methods showed better matches of the acoustic fields with 
respect to the reference water-column field, none of them was nevertheless able to cope 
with all the characteristics of this reference field, with a higher impact at long ranges and 
high frequencies. Moreover, it should also be emphasized, that though the oceanographic 
survey was rather important, the optimally interpolated data still present some limitations 
in range and time resolutions, i.e. 2 km and 1 day respectively. Therefore, for the purpose 



of acoustic predictions, there is a need for improvement of the ocean forecasts. Several 
ways are possible to enhance ocean modeling skills for the specific requirements of 
acoustics. A denser hydrographic survey and a better assimilation of in situ ocean data at 
earlier stages of the ocean-modeling phase are likely to provide better initial forecasts. 
Anyway, this approach can be constrained by the number of measuring platforms and 
there may also be conflicts between the measurement strategies for ocean-modeling 
solely and those dedicated to acoustics. An alternate approach which could be 
particularly worthwhile within the current ocean-acoustics framework is to use acoustic 
observations to resolve range-dependent oceanographic fields that can be used in a 
second step to improve, within a feedback loop the ocean modeling outputs. The 
interesting aspect of this approach is that acoustic observations lead to synoptic 
observations of the ocean that presumably should allow catching the oceanic variability at 
fine scales and long ranges. Moreover, these measurements are more closely linked to the 
final application. The most relevant features of the environment are likely to be caught 
through the acoustic observation and thus the resulting ocean modeling is expected to 
more closely serve the acoustic needs. A companion paper investigates the feasibility of 
such a range-dependent tomography scheme (Carriere et al, this issue) and discusses 
some of the basis for such a general ocean-acoustics feedback loop. 
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Fig. 15 Multi-frequency sensitivities on (a) 29 April 2007,12h00 and (b) 1 May 2007, 
OOhOO. 

3.3 Sensitivity analysis from a seabottom geoacoustic inversion perspective 

The use of 4D ocean modeling outputs constitutes an interesting alternative for the 
geoacoustic inversion community. Since range dependency of the water column affects 
acoustic propagation, any inversion scheme for seabottom acoustic properties has to 
constrain the environmental model with measured or predicted sound speed profiles or to 
search for the best (ad-hoc) sound speed field in searching for the seabottom properties 
(range-dependent geoacoustic inversion). Another viewpoint from the inversion 
perspective is to investigate the problem with a "system-oriented" approach, i.e. what are 
the impact of range dependency on the inversion results and whether we can cope with 
water column range dependency when performing geoacoustic inversion with a range 



independent model. Since range dependency of the water column can limit the 
performances of the range-independent approach efforts have been spent on developing 
the range-dependent approach. However the resulting methods are often quite time 
consuming because they require computationally-expensive forward acoustic propagation 
models. Moreover, they often require good a priori knowledge of the range dependency 
to better pose the inverse problem. To simplify the inverse problem, it can thus be useful 
to limit the inverse problem to a geometrical set up that limits the impact of the range 
dependency. Here it appears that at close ranges i.e., from a few hundreds meters to a few 
kilometers, the correlations between predicted and measured fields remain high over the 
whole water column (over 0.8-0.9), whatever the water column conditions are. This gives 
confidence that experimental configurations involving short ranges are most likely to be 
weakly impacted by range dependency. Such an approach has been followed during the 
BP07 sea trial during which dedicated seabottom geoacoustic inversion runs were 
designed to assess the seabottom properties in parallel to the ocean modeling efforts. For 
these runs, a sound source emitting broadband-coded signals within the frequency range 
300-1800 Hz was employed and the signals were received along sparse VLAs at 
distances not exceeding 1-2 km. Though the full vertical intercorrelation measure is not 
completely representative of the VLA design employed (sparse arrays limited to a part of 
the water column), it provides good confidence that such a setup is suited for geoacoustic 
inversion purposes with little impact of the range dependency of the water column as was 
recently confirmed by the first BP07 geoacoustic inversion results along the AB transect 
(Hermand and Le Gac, 2008). Hopefully, this is expected to be extended to the small- 
scale time variability. Further work shall be dedicated to investigate that assumption. 

4. Conclusions and perspectives 

This work presents an innovative approach to the coupled ocean-acoustic problem. 
Despite scarce hydrographic monitoring which is obviously a strong limitation for 
accurate and reliable ocean forecasting, sophisticated - but cheap - methods can be used 
to exploit both observational and prediction information streams. We have demonstrated 
the potential benefit of combining dynamically various observational data sources {i.e. 
CTD, thermistor strings and others) and traditional ocean prediction into a super- 
ensemble forecast to better characterize and predict ocean and acoustic properties. 

In a companion paper (Carriere et al, this issue), tomography-derived synoptic data 
provides a promising complement (or even an alternative approach) to standard 
hydrographic measurements. In particular, range dependent temperature or sound speed 
profile obtained by acoustic inversion may be in turn assimilated in ocean models or 
multi-model super-ensembles (SE). Subsequent nowcast and forecast can then further 
help refining the inversion process. 

Ongoing efforts on SE include the exploitation of remote sensing information to better 
understand SE error covariance and to overcome the lack of in-situ observations. 



The prediction of the SE error statistics also deserves some increased efforts. The 
uncertainties may be exploited in the inversion process because they help better 
constraining the search space. These uncertainties may also be used in adaptive sampling 
efforts to optimize the observational network and asset allocation by focusing on areas 
where errors are expected to be higher. 

This multidisciplinary ocean-acoustic feedback approach offers some promising 
perspectives in the context of Rapid Environmental Assessment. 
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